V2.0

Peripheral Sensor Interface for Automotive Applications

Substandard Airbag

Technical	PSI5	Page 1/8	
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0	

1 Introduction

One significant feature of the PSI5 V2.0 is the implementation of alternative PSI5 physical and Data Link Layer parameters motivated by extended application requirements. In addition to the base standard application specific frameworks and conditions are given in corresponding substandards, where recommended operation modes and system configurations are given, as well as forbidden configurations are excluded.

Please be aware, that not every feature can be combined among one other. Hence it is in responsibility of the system vendor to evaluate which feature is necessary to fulfill the system requirements and assure that the combination of features is compatible.

This substandard is effective with the PSI5 Base standard V2.0 and is valid for all airbag components. It is in full compliance to the previous PSI5 standard PSI5 V1.3.

The document is structured similar to the PSI5 V2.0 Base Specification Standard: Chapter 2 gives recommended operation modes, whereas Chapter 3 and 4 define details of the Sensor to ECU, or the ECU to sensor communication, respectively. Chapter 5 describes Application Layer Implementations and in Chapter 6 specific system parameters and timings for airbag applications are given.

Technical	PSI5	Page 2/8
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0

2 Recommended Operation Modes

Asynchronous Operation						
Mode	Sensor Data	Description				
A8P	250/1L	min. 1 value each 250µs (incl. tolerances)				
A10P	250/1L	min. 1 value each 250µs (incl. tolerances)				
A16CRC	500/1L	min. 1 value each 500µs (incl. tolerances)				
Synchronous O	peration					
Bus Mode	Sensor Data	Description				
P10P	250/1L	Single sensor 4kHz data transmission				
P10P	500/2L	Two message slot parallel bus / 500µs data rate				
P10P	500/3L	Three message slot parallel bus / 500µs data rate				
P10P	500/4H	Four message slot parallel bus / 500µs data rate				
P16CRC	500/2L	Two high resolution sensors parallel bus / 500µs data rate				

3 Sensor to ECU communication

Basically the full data range as specified within the Base Specification can be applied to. Recommended Data word length is a 10 bit data word (payload) with two start bits and one Parity bit for error detection.

3.1 Scaling of Data Range

For sensors with a data word length of more than 10 bit, the data range scales as described in the PSI5 V2.0 Base Specification. Furthermore, the following definition is effective: status and initialization data words of range 2 and 3 are filled up with the value of the bit corresponding to the "D0" bit in the 10 Bit data word (possibility to check for stuck bits in the receiver).

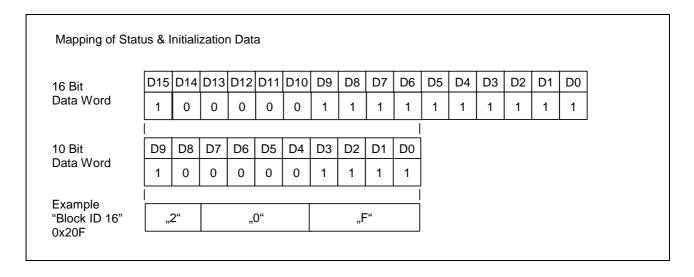


Figure 1 Mapping of status and initialization data into a data word

Technical	PSI5	Page 3/8
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0

Dec	Hex	Signification	Range	
32767 +31168	0x7FFF 0x79FF :	Reserved (ECU internal use) Sensor Ready	Status & Error Messages	2
+30720 : 0 : -30720	0x7800 : 0x0000 : 0x8800	Highest Positive Sensor Signal : Signal Amplitude "0" : Highest Negative Sensor Signal	Sensor Output Signal	1
-30784 : -31744 -31808 : -32768	0x87FF : 0x8400 0x83FF : 0x8000	Status Data 1111 : Status Data 0000 Block ID 16 : Block ID 1	Block ID's and Data for Initialisation	3

Table 1 Scaling example: Data Range for a 16 Bit data frame

4 ECU to Sensor (bidirectional) communication

ECU to Sensor communication is executed in Tooth gap mode as defined in the base standard. Sensor response during bidirectional communication is carried out in Data range codes RC, RD1 and RD2.

5 Application Layer Implementations

5.1 Sensor start up an Initialization

Sensor identification data is sent via Data Range Initialization. The initialization phase is divided into three phases and the data message repetition count k typically has a value of 4.

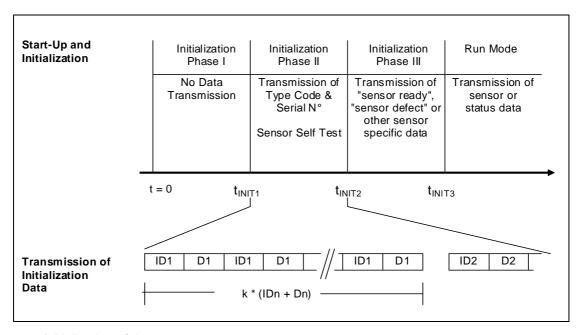


Figure 2 Initialization of the sensor

	Initialisation Phase I	Initialisation Phase III
Duration of	t = 50150 ms	Minimum: 2 messages
initialization phases	alization phases Typical: 100 ms	Maximum: 200 ms
		Typical: 10 values

All rights including industrial property rights and all rights of disposal such as copying and passing to third parties reserved.

Initialization Data Content:

The following definitions are made in addition to the Base Specification.

Mandatory definitions:

	Head	Initialization		Vend	Vendor ID		Product ID		
Data field	F1	F2	2	F	3	F	4	F	5
Data nibble	D1	D2	D3	D4	D5	D6	D7	D8	D9
	PSI5 v.	# of Data	ablocks	Vend	or ID	Senso	or type	Sensor	param.

Recommended definitions:

	Application specific											
Data field	F	6		F7			F	-8			F9	
Data nibble	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19	•••	D32
	Sensor	Sensor manuf. Sensor application Sensor production date		Sensor application Sensor production date		Sensor application		Sen	sor trace	inf.		

Field	Name	Parameter definition	Value
F1 (D1)	Meta Information	Protocol Description (D1) PSI5 1.x PSI5 2.0, Data Range Initialization	0100 0110
F2 (D2, D3)	Initialization data Length Number of Data nibbles transmitted	Example: F1-F9	Example: 0010 0000
F3 (D4, D5)	Vendor ID	s. Base Specification Ch. 5.1.4	
F4 (D6, D7) F5 (D8,D9)	Sensor Type Definition of the sensor type (acceleration, pressure, temperature, torque, force, angle, etc.) Sensor Parameter Definition of sensor specific parameters e.g . measurement range.	Acceleration Sensor (High g) Information depending on the corresponding sensor type	XXXX 0001 Sensor specific definition

Technical	PSI5	Page 6/8	
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0	

6 Physical Layer - Parameter Specification and timings

6.1 System Parameters

Airbag systems are implemented in "Common Mode" as defined in the Base Specification Document. In order to achieve full backward compatibility with the former PSI5 V1.3 standard, the following parameter selection is necessary.

PSI5 Common Mode

- Supply Voltage (standard mode); V_{CE, min} = 5.5V; V_{SS, min} = 5.0V
- Sync signal sustain voltage V_{t2} = 3.5V
- Internal ECU Resistance $R_{E, max} = 12.5\Omega$

With this selection the optional given system parameters N° 2, 4, 7, 9 and 12 of the "common mode" table in the PSI5 V2.0 Base Specification are excluded for airbag applications.

6.2 Timings

Please note that due to backward compatibility the values given below are adopted from PSI5 V1.3. Derivations to calculated timeslots according to Ch. 6.6 in the PSI5 V2.0 Base Standard are possible.

6.2.1 PSI5-P10P-500/3L Mode

This example is calculated with a standard sensor clock tolerance of 5%.

N°	Parameter	Symbol	Remark	min	nom	max	Unit
1	Sync signal period	T _{Sync}		495		505	μs
	Maximum tolerance of sync signal period +/-1						
				t ^N Ex	t ^N _{Nx}	t ^N _{Lx}	
2	Slot 1 start time	t ¹ _{xS}	Related to t ₀	44			μs
3	Slot 1 end time	t ¹ _{xE}	Related to t ₀				μs
4	Slot 2 start time	t ² _{xS}	Related to t ₀	181.3			μs
5	Slot 2 end time	t ² _{xE}	Related to t ₀				μs
6	Slot 3 start time	t ³ _{xS}	Related to t ₀	328.9			μs
7	Slot 3 end time	t ³ _{xE}	Related to t ₀			492	μs

The timings also apply for universal bus mode and daisy chain bus mode.

Technical	PSI5	Page 7/8
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0

6.2.2 PSI5-P10P-500/4H Mode

This example is calculated with a standard sensor clock tolerance of 5%.

N°	Parameter	Symbol	Remark	min	nom	max	Unit
1	Sync signal period	T _{Sync}		495		505	μs
	Maximum tolerance of sync signal period +/-1						
		•	t ^N Ex	t ^N _{Nx}	t ^N _{Lx}		
2	Slot 1 start time	t ¹ _{xS}	Related to t ₀	44			μs
3	Slot 1 end time	t ¹ _{xE}	Related to t ₀				μs
4	Slot 2 start time	t ² _{xS}	Related to t ₀	139.5			μs
5	Slot 2 end time	t ² _{xE}	Related to t ₀				μs
6	Slot 3 start time	t ³ _{xS}	Related to t ₀	245.5			μs
7	Slot 3 end time	t ³ _{xE}	Related to t ₀				μs
8	Slot 4 start time	t ⁴ _{xS}	Related to t ₀	362.5			μs
9	Slot 4 end time	t ⁴ _{xE}	Related to t ₀			492	μs

The timings also apply for universal bus mode and daisy chain bus mode.

Technical	PSI5	Page 8/8
Specification	Peripheral Sensor Interface – Airbag Substandard	V2.0

7 Document History & Modifications

Rev.N°	Chapter	Description / Changes	Date
2.0	all	First Release of Airbag Substandard;	01.06.2011
		Revision Number of corresponding PSI5 Base Document adopted	